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Sensing and Sensemaking

IoT: Good in sensing, Poor in sensemaking

Motion MEMS

Microphones

Imaging

• Low-Power Cameras
• Time-of-Flight Sensors
• Infrared Cameras

• Gyroscopes
• Accelerometers
• Magnetometers
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The value of AI

[Source] McKinsey

$5.8 trillion/year
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Edge-AI for the IoT
▪ Sense-making:

▪ Present: in-the-cloud

▪ Future: at-the-edge

Sense-making

IoT

healthcare

mobility

Industry 4.0

energy

smart-city

anyone/anything

Data Volume
10 Billion-GB/year

Scalability?

✓ Reduce response time
✓ Save transmission energy
✓ Improve privacy&security

Edge Computing
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Making sense of data
▪ Convolution Neural Networks (ConvNets) achieved human-level accuracy

▪ End-to-end learning, i.e. automatic features selection

▪ Designing ConvNets:

▪ Training: learn a proper set of parameters (𝑊, 𝑏) using Back-Propagation

▪ Inference: Feed-forward execution of the net

in-the-cloud

at-the-edge ~ 10mW – 10W

~ 500W

Enable 
Edge Inference

Goal:
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✓ Large diffusion

✓ Stable toolchains

× Low Thermal Design 
Power

Applications and Hardware

▪ Activity recognition

▪ Anomaly detection

▪ Keyword Spotting

▪ Image classification

▪ Face recognition

▪ Style Transfer

▪ Object Detection

▪ Segmentation

▪ Autonomous navigation

✓ Low Cost

✓ Low Energy

× Low Memory

× Low Performance

✓Power/Performance 
stability

× High Cost

× Unstable toolchains

Microcontrollers (MCUs) Embedded CPUs ASICs/DSPs

10—100mW
<1MB

~10W
~4GB

~3.5W
~2GB
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ConvNets are huge!

Neural Network 
Optimization

Enable Edge Inference
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Existing tools for Neural Network Optimization
1) Topology Optimization

▪ Manual or Automatic (NAS)

2) Pruning

▪ Filter Pruning

▪ Weight Pruning

3) Quantization

▪ Floating-Point → Fixed-Point

▪ Bit-width (1-, 2-, 3-, 4-, 8-bit)

→Joint application to maximize savings

FP32

INT8

1.7492345

1.75
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Multi-objective optimization

Accuracy

PowerEnergy

Memory

Challenges

Hardware diversity

2012
AlexNet: 1st place on ImageNet

2017
NEMO: Neuro-Evolution 
with Multi-Objective

~5 years

[Source] McKinsey

4170

17500 17300

NAS PRUNING QUANTIZATION

# of research papers
2012-today

[Source] Google Scholar
>13 paper/day!
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Modular collection of optimization tools

1. MEMORY OPTIMIZATION
▪ Prune and Quantize

▪ Encoding-Aware Sparse Training

2. ENERGY OPTIMIZATION
▪ On-line Precision Scaling

▪ Scalable-Effort ConvNets

3. POWER OPTIMIZATION
▪ Voltage-Scaled ConvNets

▪ FINE-VH

MCU

MCU

ASIC

ASIC

ASIC

CPU
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1. MEMORY OPTIMIZATION
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Challenges
▪ Goal: Edge inference on ultra low-power MCUs.

▪ Challenge: Extreme memory constraints

▪ ConvNet Parameters (Flash and RAM)

▪ 500K to 100M of parameters

▪ ConvNet intermediate results (RAM)

▪ Limitation:

× Limited ISA: minimum bit-width is 8-bit

1. MEMORY
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Prune and Quantize (PaQ)
▪ Motivation: Identify the best combination of pruning and quantization for memory-

constrained applications.

1. MEMORY

#Filters Bit-width
× No memory constraint

× No bit-width constraint 

SoA: CLIP-Q

Accuracy

#Filters

Our: PaQ

Bit-width

Memory

[Source] Clip-q: Deep network compression learning by in-parallel pruning-quantization, F. Tung et al., CVPR18

Any-bit 8-bitImagination
PowerVR AX3125

ARM Cortex-M
STM/NXP: 3$

=

Cross-Layer

Accuracy?

Goal:
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Prune and Quantize: Results

Image Classification on CIFAR-10
Mem.

(KB)

Optimal 

Bit-width

Optimal

Top-1

ARM 

Bit-width

ARM

Loss

245 15 83.10 8 0.25

115 7 82.64 8 0.20

98 7 81.99 8 0.59

82 6 81.49 8 0.70

66 6 80.42 8 1.57

49 5 78.17 8 6.53

33 5 71.85 8 17.17

For most solutions 
8-bit has marginal loss

We need custom HW 
at extreme constraints

3x compression
<1% accuracy loss

▪ Parametric design-space exploration

▪ Bit-width: 16- down to 2-bit

▪ 8-bit tested on-device

▪ Other bit-widths via emulation

▪ Memory (Mem.)

1. MEMORY
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saved memory

Encoding-Aware Sparse Training
▪ Goal: Reduce size of ConvNet Parameters

▪ SoA: Sparse Training + Weight Encoding

3 0 0 4 4 0 0 0 9 0 0 0 0 7 0 0 0 0 5 5 5 5 0Sparse Weights

Coding result 3 1 0 2 4 2 0 3 9 1 0 4 7 1 0 4 5 4 0 1

(3,1) (0,2) (4,2) … (0,3)

3 1 2 4 4 2 1 2 9 1 2 1 1 7 2 1 2 0 5 5 5 5 2

Substantial 
Accuracy loss

Dense Weights

Efficient 
Compression

1. MEMORY
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Encoding-Aware Pruning

3 0 0 4 4 0 0 0 9 0 0 0 0 7 0 0 0 0 5 5 5 5 0Sparse Weights

Coding result

Weight Pruning

Size=23

Size=203 1 0 2 4 2 0 3 9 1 0 4 7 1 0 4 5 4 0 1

#0s = 15

(3,1) (0,2) (4,2) … (0,3)

3 1 0 6 2 1 3 1 0 6 7 1 9 1 5 1 6 2 2 3

3 0 0 0 0 0 0 2 3 0 0 0 0 0 0 7 9 5 6 6 2 2 2

Group Pruning (Size=6)

#0s = 12

Size=20

#0s ↘
Size ==

more information!Sparse Weights

Coding result

1. MEMORY
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Sparse Training

[Source] To prune, or not to prune: exploring the efficacy of pruning for model compression, M. Zhu et al., arXiv 2017

Train for N epochs

Magnitude
Weight Pruning

Freeze Zeroed Weights

Fine-Tuning

Increase St

Magnitude
Group Pruning

Mt

St

GS

Memory Met?
N Increase St

Increase GS

Hyper-parameters Notation

Target Memory

Pruning Frequency

Target Sparsity

Group Size

Mt

N

St

GS

Y

Initial value

12—112KB

1

30%

1

INT8 Quantization

Encoding

1. MEMORY
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Weight Pruning vs. EAST: Memory

Same as Weight Pruning

GS ↗: Memory↘↘

Meet Mt sooner

-10.7% sparsity

ResNet-9 on CIFAR10

Lower Sparsity = Higher Accuracy?

1. MEMORY
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Yes! Lower sparsity = Higher accuracy

ResNet-9 on CIFAR10

Similar accuracy 
for larger memory

Better accuracy
for tighter memory

Mt: Target Memory
CR: Compression Ratio
Sx: Sparsity
Ax: Accuracy
∆A: Accuracy difference

1. MEMORY
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2. ENERGY OPTIMIZATION
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Adaptive ConvNets
▪ Motivation: SoA ConvNets are designed and deployed as static graphs

▪ Goal: Adaptive ConvNets

▪ Contributions:

1) Online Precision Scaling

2) Scalable-Effort ConvNets

accuracy = more time

less time = less accuracy

2. ENERGY

Dynamic SW:
Adaptive ConvNets

Goal:
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Enable Effort-Accuracy Scaling
▪ Improve/Reduce accuracy → Reduce/Increase effort, hence energy

▪ Knob: dynamic precision scaling

▪ Granularity: per-layer

▪ Key Feature: single weight-set

high-precision

mid-precision

low-precision

Software-Programmable 
Multi-PrecisionEffort

(energy)

Accuracy

dynamic
knob

memory 
reduction

naïve

Memory

Multi-Precision

2. ENERGY
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221 = 2.1 × 106

254 = 1.8 × 1016

2 precision options: 
• full (16-bit)
• half (8-bit)

Per-layer precision assignment
▪ Why per-layer?

▪ Define multiple operating points

▪ Fine-grain control on effort-accuracy trade-off

▪ Objective: 

▪ Identify Pareto optimal configurations in the energy-
accuracy space

half
full

half

full

ConvNet FP32 Acc. #Params #Cycles #Layers

ResNet18 69.13% 11.68M 29.35M 21

ResNet34 72.69% 21.78M 57.28M 37

ResNet50 74.10% 25.50M 74.40 54

SqueezeNet 56.36% 1.23M 6.45M 32

MobileNet v2 69.98% 3.47M 12.13M 54

We need heuristics!

Which Precision?

ImageNet Classification

2. ENERGY
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Output

Online Precision Scaling: Design

Multi-Objective Optimization

Identify Pareto front

Goal:

2. ENERGY
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Depthwise Convolution
need high-precision

Online Precision Scaling: Results

ConvNet↗
Ex. Time ↗

run-time
adaptation

2. ENERGY



26

Beyond Energy-Accuracy Scaling: Brain Teaching

Problem
Complexity

Focus

Easy: cat or dog? Hard: pedigree?

low

high
keep focus and improve 

the quality of result

Result might be wrong 
due to high complexity: 

need more knowledge to 
improve quality

Reduce effort 
relaxing the 

accuracy constraint

SOTA

2. ENERGY



27

Static vs Dynamic
▪ SoA: Hierarchical ConvNets

▪ Tune the computational effort depending on the complexity of the input 

▪ E.g. drop some filter/layer at run-time

▪ No abstraction level

▪ No Energy/Accuracy trade-off

dog

features clearly visible features are “masked”

dogReduced model Full model

Input complexity

Energy

easy hard
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Training Data-Sets are Hierarchical
▪ Common datasets reflects the semantic abstraction of human reasoning

▪ E.g. ImageNet: 1000 classes, 16 levels of abstraction

▪ CIFAR-10/100 follows same hierarchy

Depth = 4

Depth = 6

entity

physical-entity

matter

substance

food fluid

nutriment

dish

pizza

liquidbeverage

espresso alcohol

meatloaf

library

red wine

2. ENERGY
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Multilevel classification with ConvNets
▪ E.g. Image Classification in CIFAR-10

entity

animal vehicle

bird cat dog deer horse planefrog car ship truck

10-way ConvNet

bird 3%

deer 2%

cat 79%

frog 3%
horse 2%

car 1%

ship 1%
plane 1%

dog 7%

truck 1%

∑

animal 96%

vehicle 4%

P(animal) = P(bird) + P(cat) + P(dog) + P(deer) + P(horse) + P(frog)

abstraction 
level

2. ENERGY
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Scalable Effort ConvNets: Results (1)
▪ Multi-level Classification on ImageNet

SqueezeNet

2. ENERGY
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Scalable Effort ConvNets: Results (2)
▪ Adaptive ConvNets

▪ Multilevel Classification → increase accuracy with same effort

▪ Per-layer Precision Scaling →define multiple points in the energy-accuracy space

SqueezeNet on ImageNet

less effort

Baseline  L16
Max Effort

Iso-Energy

Iso-Accuracy

run-time
adaptation

2. ENERGY
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3. POWER OPTIMIZATION
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Motivations
▪ 1. Temperature

▪ Embedded SoCs have limited TDP

→High temperature when running intensive workloads (e.g. inference)

→Peak-performance for short run-time windows.

▪ 2. Energy

▪ Energy reduction via power minimization

Performance Profiling of Embedded 
ConvNets under thermal-aware DVFS

Voltage-Scaled ConvNets Beyond DVFS

FINE-VH: a novel power distribution scheme

ASICCPU

Dynamic Voltage Frequency Scaling (DVFS)

Neglected by 
SoA NN optimization

3. POWER

Dynamic HW:
DVFS

Goal:
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Thermal-Aware DVFS
▪ Problem: Data Analytics on a stream-of-data → Continuous Inference

▪ Challenge: Mobile SoCs have limited TDP

▪ Thermal-Aware DVFS: Reactive vs Proactive

▪ Goal: Identify the optimal VF operating point

What about ConvNets?

nullify savings brought 
by NN optimization!

3. POWER
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Voltage-Scaled ConvNets on ARM Cortex-A15

2. Assess latency under 
thermal-aware DVFS

1. Quantify thermal headroom

T<90°C

+43%
+30%-17% -16%

3. Demonstrate thermal profile depend on topology

T
em

p
er

at
u

re
 (
°C

)

3. POWER

Single-Inference Latency
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Beyond DVFS: FINE-VH

▪ Goal: apply a finer VDD scaling 

▪ Limited area overhead: 6% w.r.t. standard flow

▪ From 32.0% to 38.2%  w.r.t. ideal-DVFS

FINE-VH outperforms DVFS

3. POWER

T1 T2 T3 T4 T5

T6 T7 T8 T9 T10

T11 T12 T13 T14 T15

T16 T17 T18 T19 T20

T21 T22 T23 T24 T25

FU = Functional Unit

FU 1

FU 2

FU 3

T = Layout Tile

SoA: Our: FINE-VH
Vdd1 Vdd2

15-30 rows!

× Power Distribution
× Layout Fragmentation
× No Level-shifters

▪ How: Fully automated design and simulation flow 
integrated on a standard EDA tool

▪ Validated on:
• RISC Core
• Deep Learning Accelerator
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Wrap-up

1. MEMORY 2. ENERGY 3. POWER

Prune and Quantize

Memory vs. Accuracy 
design-space exploration

Encoding-Aware 
Sparse Training

Maximize compression of 
encoding schemes

Online Precision Scaling

Dynamic Energy-Accuracy 
Scaling

Scalable-Effort ConvNets

Dynamic Energy-Accuracy-
Abstraction Scaling

Voltage-Scaled ConvNets

Performance profiling under 
thermal-aware DVFS

FINE-VH

Novel power distribution 
scheme to improve DVFS

+8.73% accuracy at 12KB

3$ HW is enough:
3x compression with <1% loss

Up to 38.2% power savings

Look at Temperature!
Safe latency: 1-3s

Up to 35.2% savings
with <8% loss

40% more accurate
or 60% more efficient
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The Lesson Learnt

Present: Exploratory Data Analysis

▪ Data Collection/Cleaning

▪ Data Visualization

▪ Assess different hypothesis:

▪ Hyper-Param. Optimization

▪ Learning Strategy

▪ Supervised, Self-Supervised, 
Transfer Learning etc.

▪ …

The definitive solution does not exist!

TRAINING
Future: Exploratory Optimization Analysis

▪ Design-Space Exploration

▪ Accuracy, Memory, Energy, Power…

▪ Cost Analysis

▪ Which HW?

▪ Assess different hypothesis:

▪ NAS

▪ Pruning

▪ Quantization

▪ Static vs. Dynamic…

OPTIMIZATION
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Research Activities

Technical Speaker at:
▪ 2 international conferences (ICCAD18 and SNAMS19)
▪ 1 national workshop (IWES18)

Live Demonstrations at 2 international conferences (DATE19 and ISLPED19)

SENSEI - Sensemaking for Scalable IoT Platforms with In-Situ Data-Analytics:
A Software-to-Silicon Solution for Energy-Efficient Machine-Learning on Chip
(2 years)

4
journals

14
conference papers

(3 best paper candidates)

3
book chapters



Question Time

Thank you


