

Doctoral Thesis Defense

Ph.D. Program in Computer and Control Engineering (32.nd cycle)

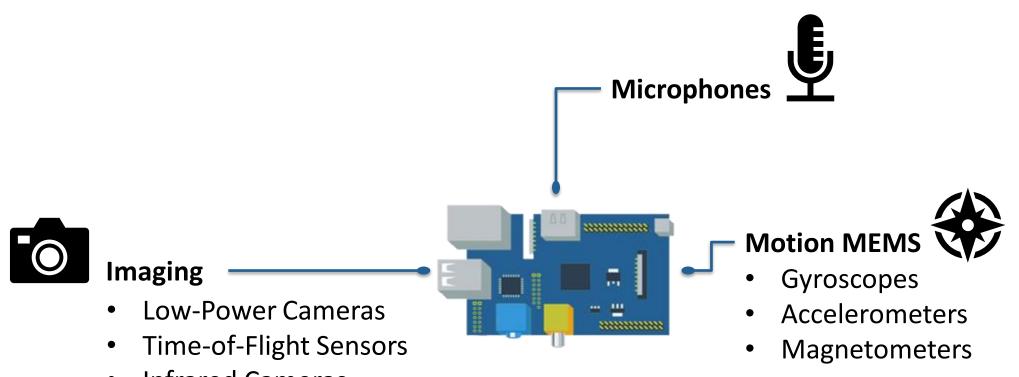
Optimization Tools for ConvNets on the Edge

Valentino Peluso

Supervisors

Prof. Enrico Macii, Supervisor Prof. Andrea Calimera, Co-supervisor

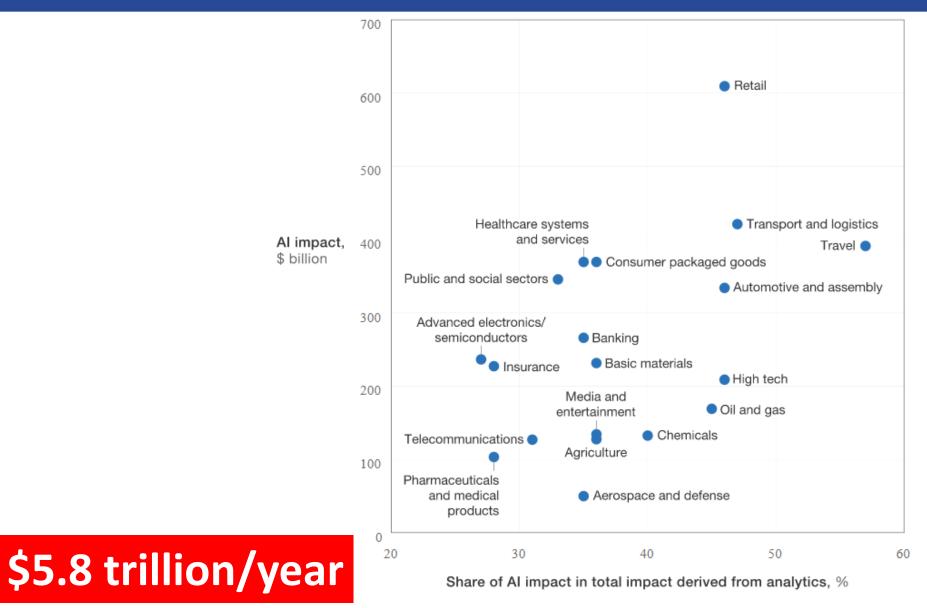
Sensing and Sensemaking



Infrared Cameras

IoT: Good in sensing, Poor in sensemaking

The value of AI

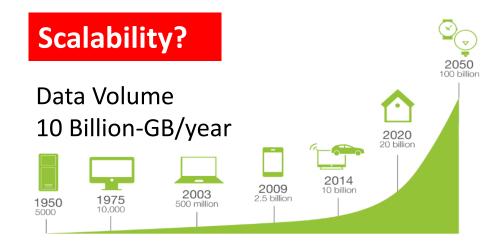


[Source] *McKinsey*

Edge-AI for the IoT

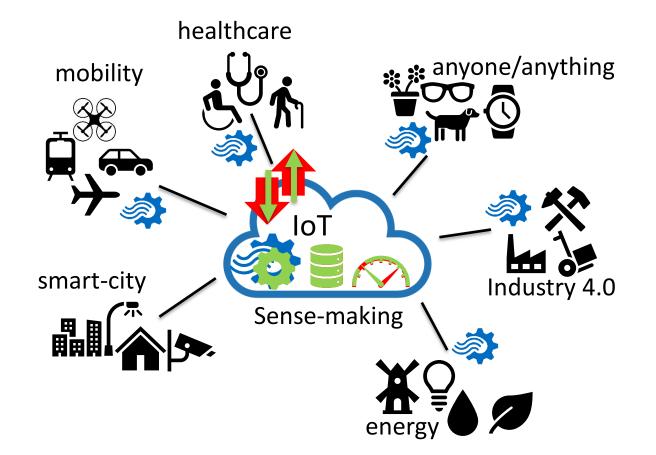
Sense-making:

- Present: in-the-cloud
- Future: at-the-edge



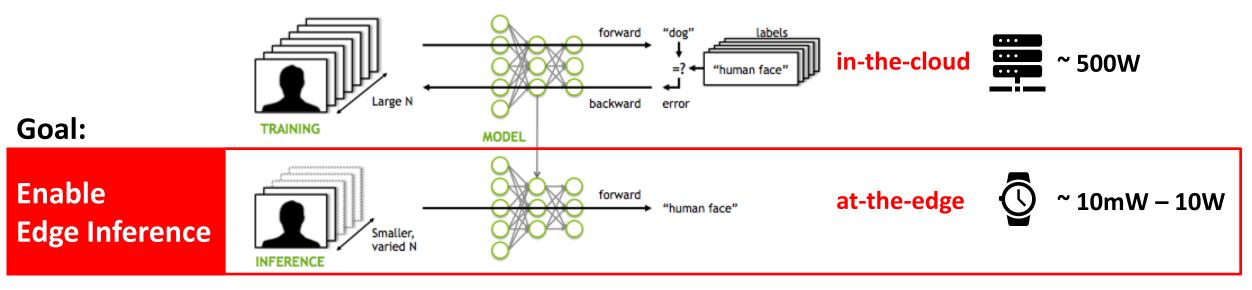
Edge Computing

- ✓ Reduce response time
- ✓ Save transmission energy
- ✓ Improve privacy&security



Making sense of data

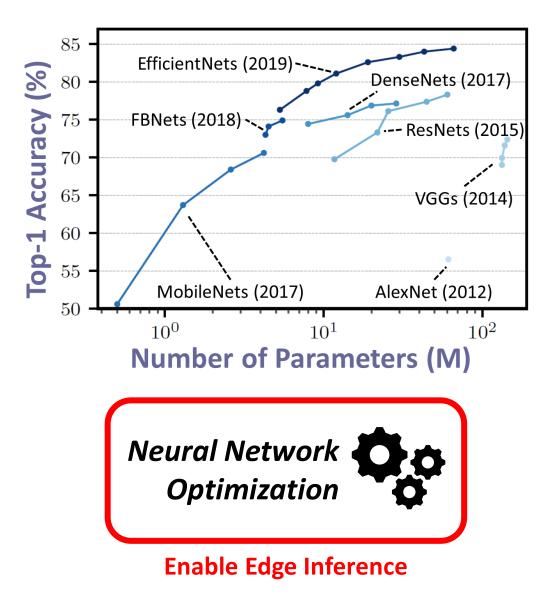
- Convolution Neural Networks (ConvNets) achieved human-level accuracy
 - End-to-end learning, i.e. automatic features selection
- Designing ConvNets:
 - Training: learn a proper set of parameters (*W*, *b*) using Back-Propagation
 - Inference: Feed-forward execution of the net



Applications and Hardware

Activity recognition Image classification Object Detection Anomaly detection Face recognition Segmentation **Keyword Spotting** Style Transfer Autonomous navigation **Microcontrollers (MCUs)** ASICs/DSPs **Embedded CPUs** 10-100mW ~3.5W ~10W <1MB ~2GB ~4GB ✓ Large diffusion **Power/Performance** Low Cost stability ✓ Stable toolchains Low Energy × High Cost × Low Thermal Design × Low Memory × Unstable toolchains Power × Low Performance

ConvNets are huge!

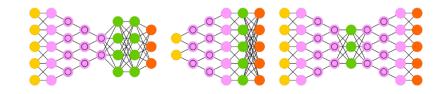


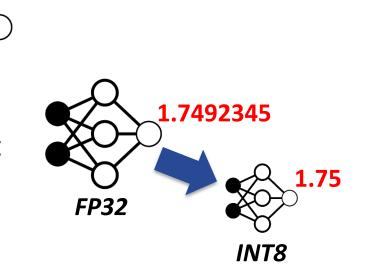
Existing tools for Neural Network Optimization

1) Topology Optimization

- Manual or Automatic (NAS)
- 2) Pruning
 - Filter Pruning
 - Weight Pruning
- 3) Quantization
 - Floating-Point → Fixed-Point
 - Bit-width (1-, 2-, 3-, 4-, 8-bit)

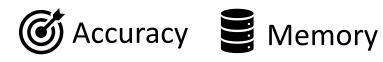
 \rightarrow Joint application to maximize savings

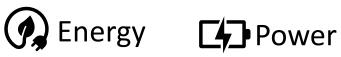




Challenges

Multi-objective optimization





Hardware diversity

<0.1

2017

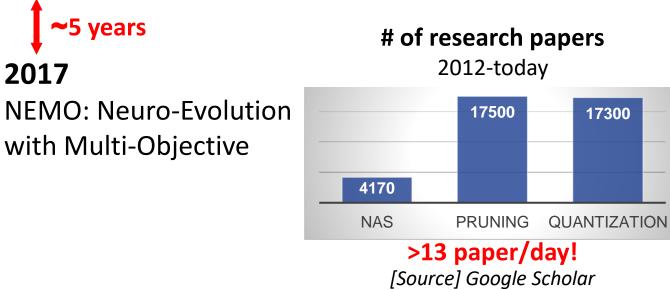
Edge architecture, % CPU Edge Hardware, total market, \$billion ASIC 4-4.5 **FPGA** 30 Other 20 10 10 2025 2017 2025 [Source] *McKinsey*

2012

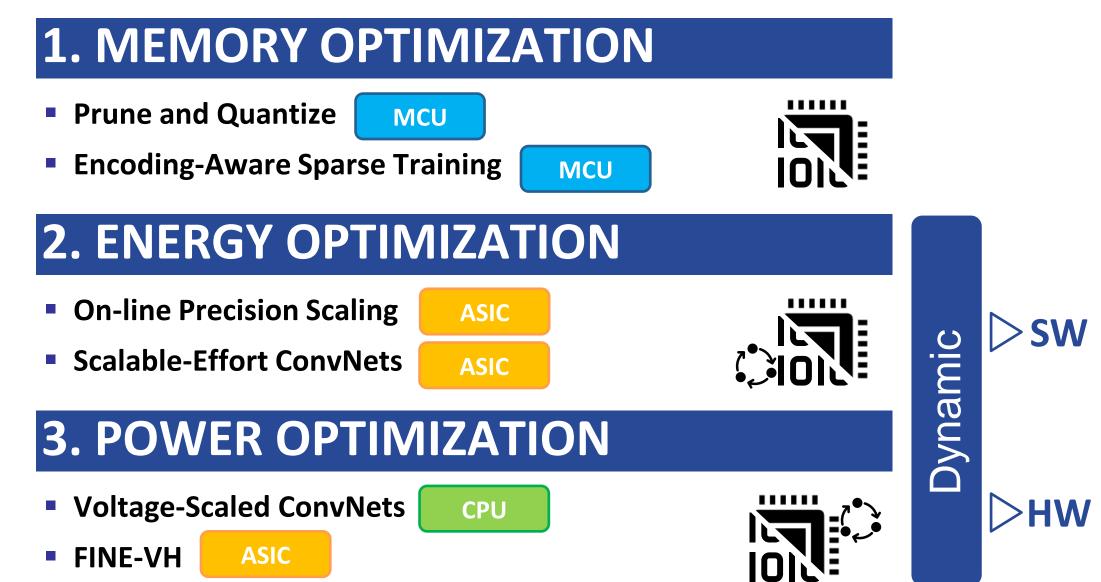
2017

~5 years

AlexNet: 1st place on ImageNet



Modular collection of optimization tools

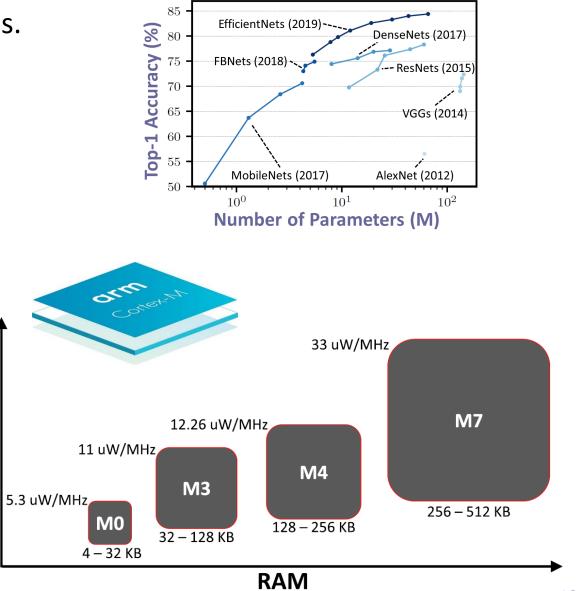


1. MEMORY OPTIMIZATION

Challenges

- **Goal:** Edge inference on ultra low-power MCUs.
- **Challenge:** Extreme memory constraints
 - ConvNet Parameters (Flash and RAM)
 - 500K to 100M of parameters
 - ConvNet intermediate results (RAM)
- Limitation:
 - × Limited ISA: minimum bit-width is 8-bit

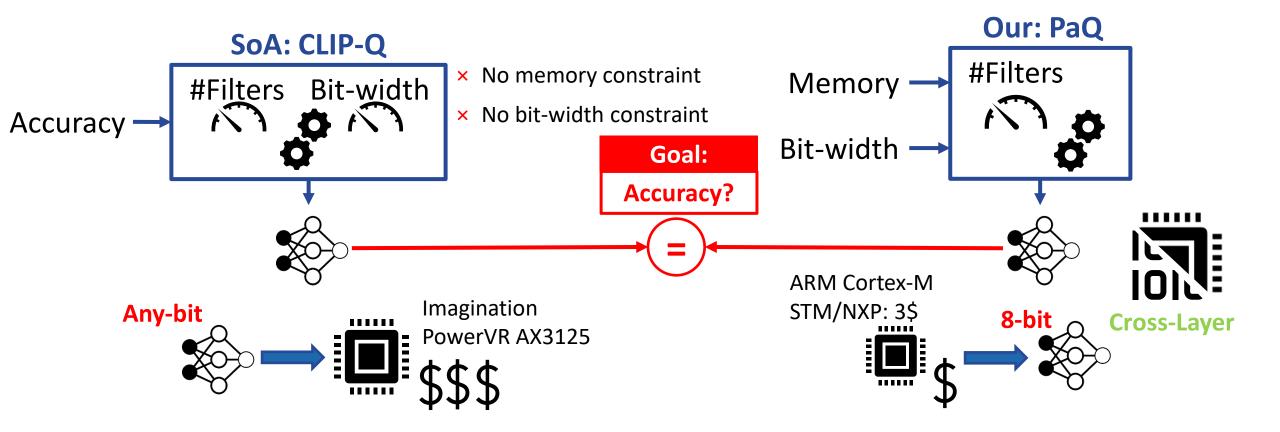
Power



Prune and Quantize (PaQ)

 Motivation: Identify the best combination of pruning and quantization for memoryconstrained applications.

1. MEMORY



[Source] *Clip-q: Deep network compression learning by in-parallel pruning-quantization,* F. Tung et al., CVPR18 13

Prune and Quantize: Results

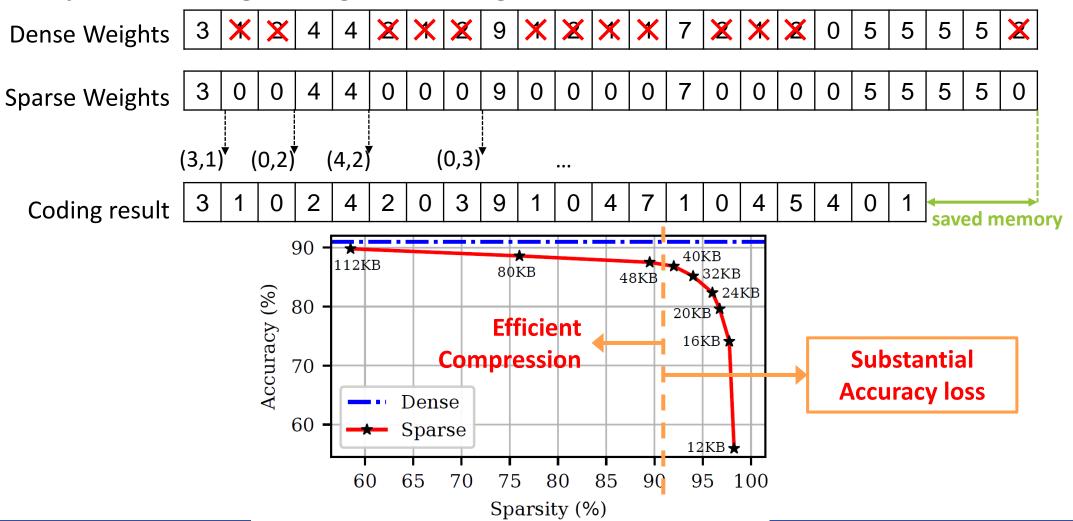
- Parametric design-space exploration
 - Bit-width: 16- down to 2-bit
 - 8-bit tested on-device
 - Other bit-widths via emulation
 - Memory (Mem.)

	Im	age Clas	sificatior	n on CIFAR	-10	
		Optimal Bit-width	Optimal Top-1	ARM Bit-width	ARM Loss	
	245	15	83.10	8	0.25	For most solutions
3x compression	115	7	82.64	8	0.20	8-bit has marginal loss
<1% accuracy loss	98	7	81.99	8	0.59	
	82	6	81.49	8	0.70	
	66	6	80.42	8	1.57	We need custom HW
	49	5	78.17	8	6.53	at extreme constraints
	33	5	71.85	8	17.17	
Not supported by MCUs ←						

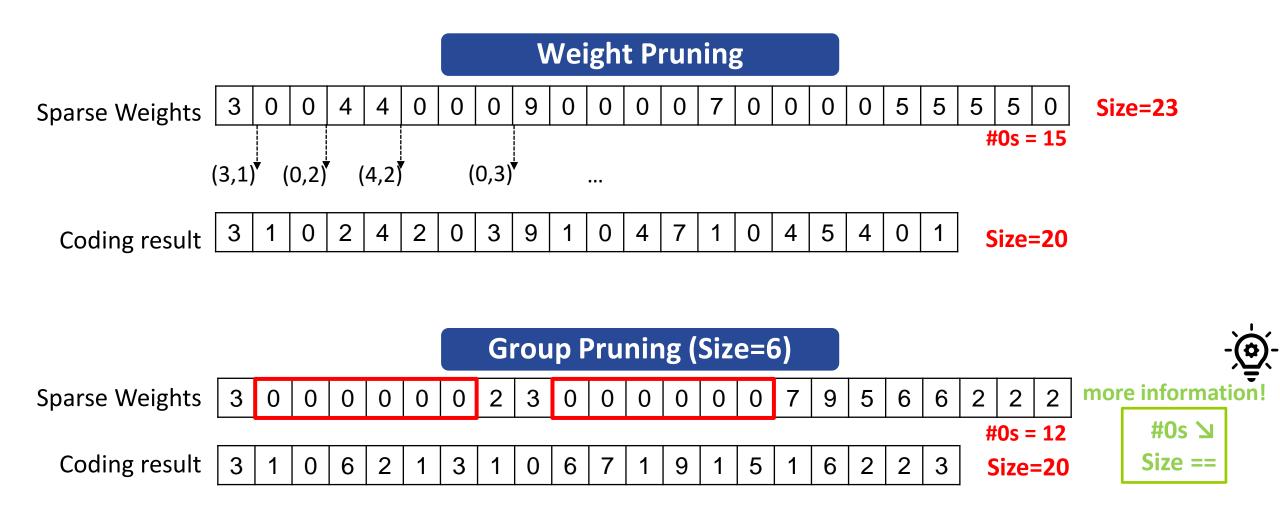
Encoding-Aware Sparse Training

Goal: Reduce size of ConvNet Parameters

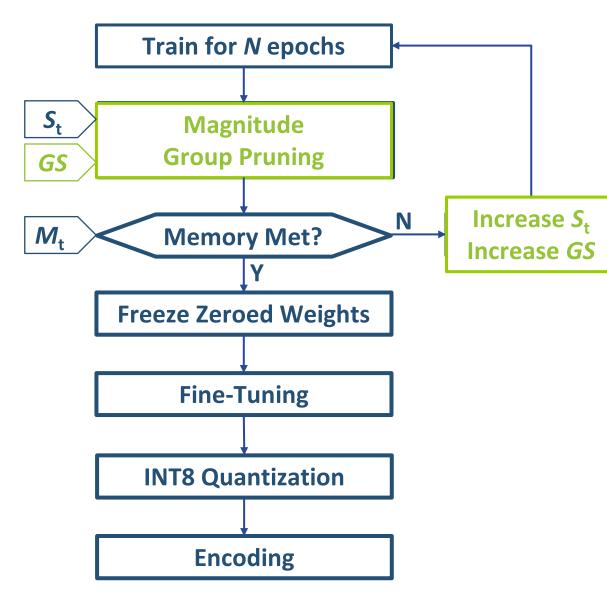
SoA: Sparse Training + Weight Encoding



Encoding-Aware Pruning

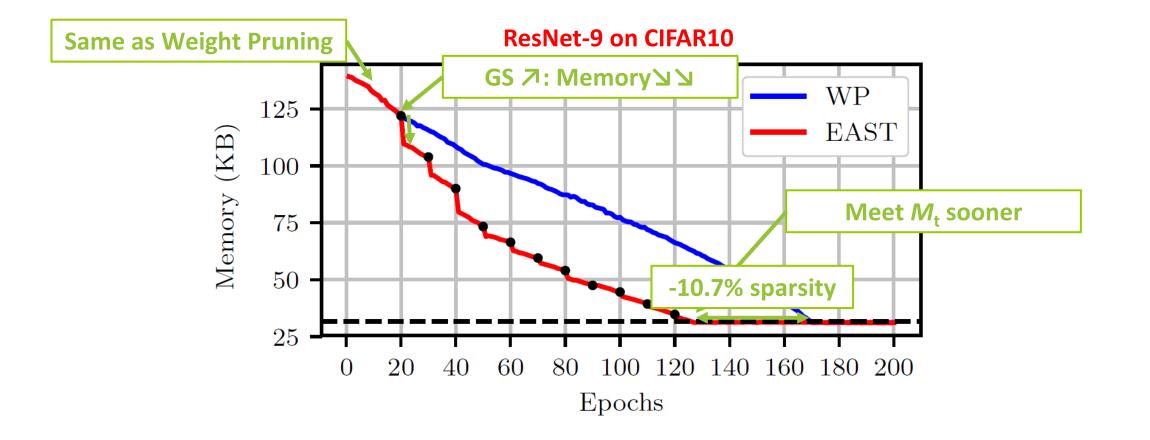


Sparse Training



Hyper-parameters	Notation	Initial value
Target Memory	<i>M</i> _t	12—112KB
Pruning Frequency	Ν	1
Target Sparsity	S _t	30%
Group Size	GS	1

[Source] To prune, or not to prune: exploring the efficacy of pruning for model compression, M. Zhu et al., arXiv 2017 17



Lower Sparsity = Higher Accuracy?

Yes! Lower sparsity = Higher accuracy

 M_t : Target Memory CR: Compression Ratio S_x : Sparsity A_x : Accuracy ΔA : Accuracy difference

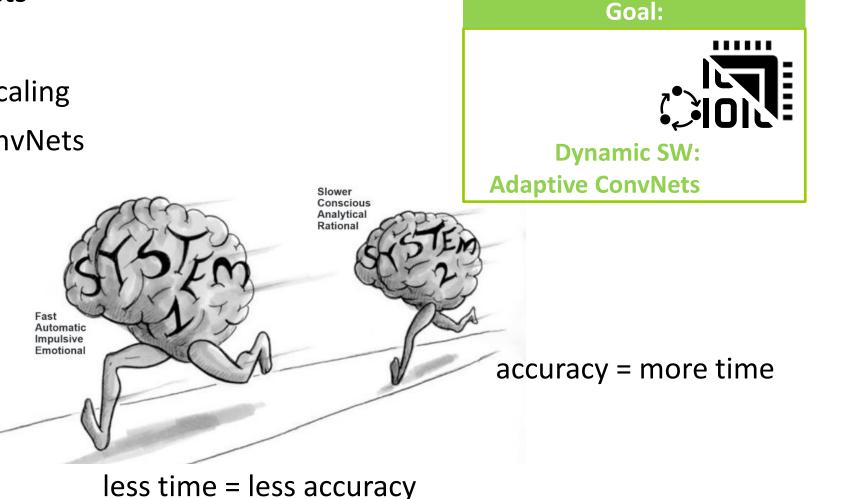
ResNet-9 on CIFAR10

	ΔA	A_{EAST}	$A_{\mathbf{WP}}$	S_{EAST}	$S_{\mathbf{WP}}$	CR	$M_{\mathbf{t}}$
Similar accuracy	-0.34%	89.46%	89.80%	49.5%	58.5%	5.0 imes	112
for larger memory	-0.06%	88.61%	88.67%	60.5%	76.0%	7.0 imes	80
	-0.07%	87.44%	87.51%	74.8%	89.5%	$11.6 \times$	48
	0.02%	86.82%	86.80%	79.0%	92.0%	$14.0 \times$	40
_	0.81%	86.11%	85.30%	83.3%	94.0%	$17.4 \times$	32
Better accuracy	1.32%	83.65%	82.33%	87.8%	96.0%	$23.3 \times$	24
for tighter memor	1.48%	81.11%	79.63%	90.0%	96.8%	$27.9 \times$	20
	4.29 %	78.45%	74.16%	91.8%	97.5%	$34.9 \times$	16
_	8.73 %	64.32%	▶ 55.59%	94.0%	98.3%	$46.5 \times$	12

2. ENERGY OPTIMIZATION

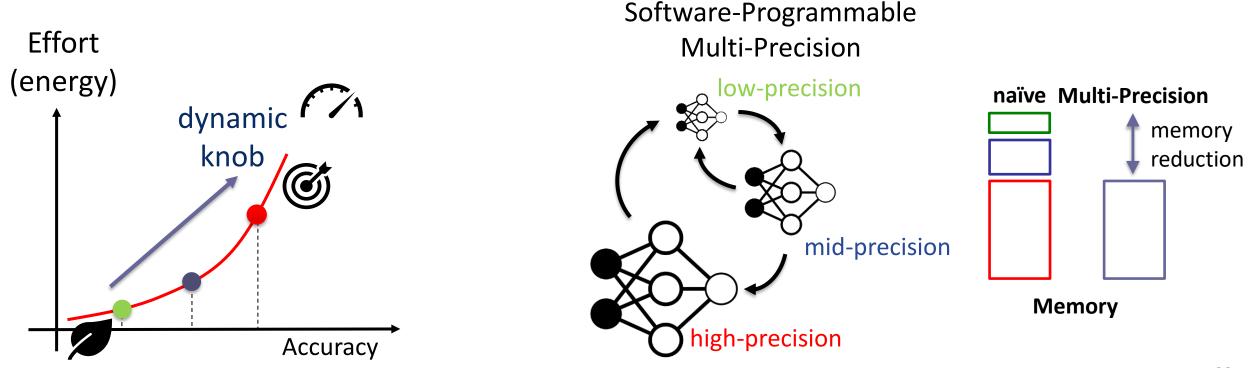
Adaptive ConvNets

- Motivation: SoA ConvNets are designed and deployed as static graphs
- Goal: Adaptive ConvNets
- Contributions:
 - 1) Online Precision Scaling
 - 2) Scalable-Effort ConvNets



Enable Effort-Accuracy Scaling

- Improve/Reduce accuracy → Reduce/Increase effort, hence energy
 - Knob: dynamic precision scaling
 - Granularity: per-layer
 - Key Feature: single weight-set



Per-layer precision assignment

Why per-layer?

accuracy space

- Define multiple operating points
- Fine-grain control on effort-accuracy trade-off
- **Objective:**

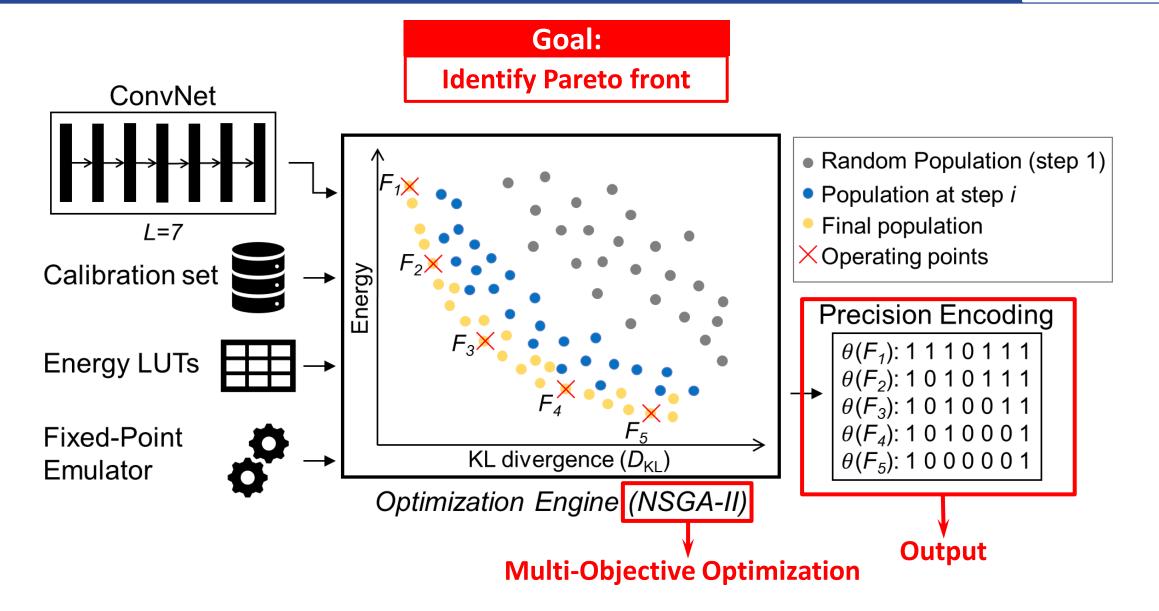
tull half half full Which Precision?

Identify Pareto optimal configurations in the energy-**2** precision options:

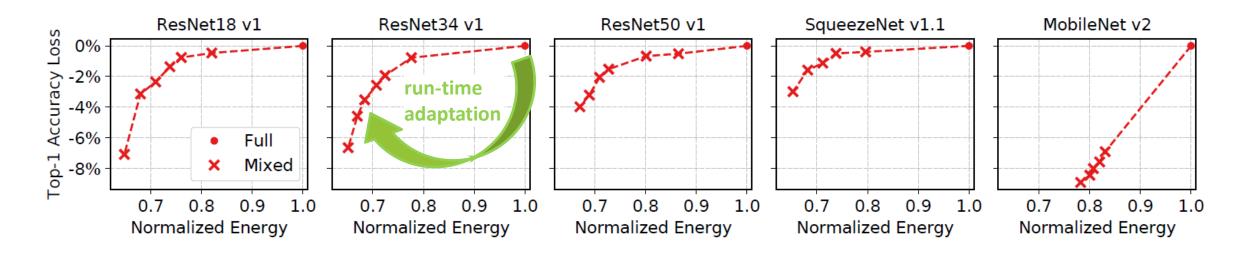
full (16-bit)

t)	• half (8-bi		tion	Classificat	mageNet	I
	Ļ	#Layers	#Cycles	#Params	FP32 Acc.	ConvNet
. × 10 ⁶	$\rightarrow 2^{21} = 2.1$	21	29.35M	11.68M	69.13%	ResNet18
		37	57.28M	21.78M	72.69%	ResNet34
d heuristics!	We nee	54	74.40	25.50M	74.10%	ResNet50
		32	6.45M	1.23M	56.36%	SqueezeNet
	$\rightarrow 2^{54} = 1.8$	54	12.13M	3.47M	69.98%	MobileNet v2
23						

Online Precision Scaling: Design

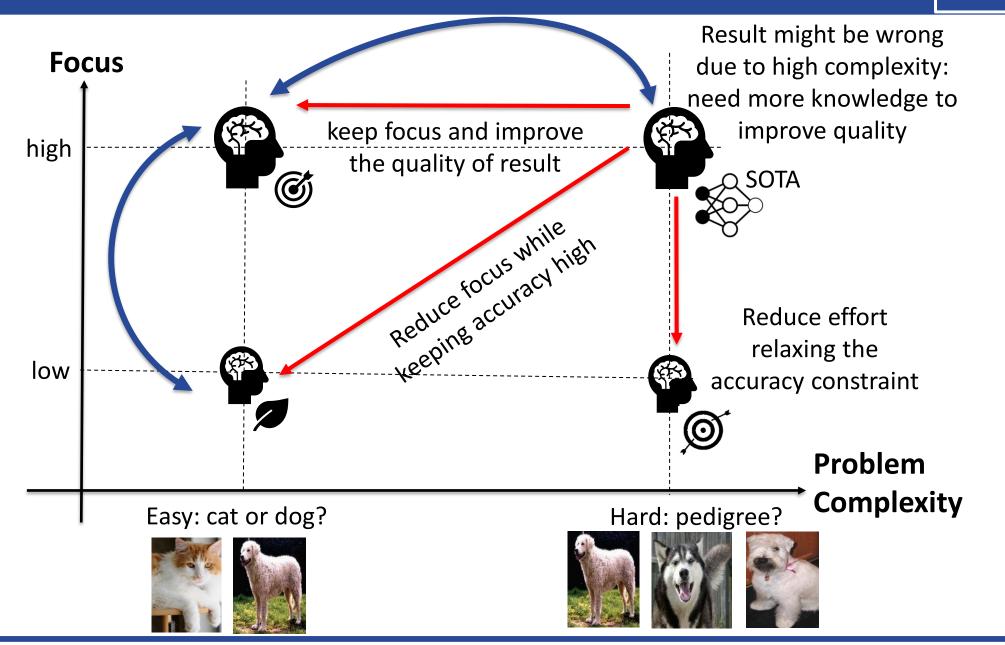


Online Precision Scaling: Results



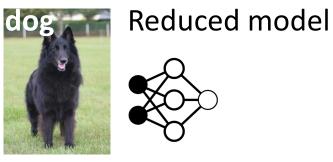
Benchmark	#Points	Δ Top-1	Savings	Ex. Time
ResNet18 v1	6	2.5%	27.4%	$8 \min 32 s$
ResNet34 v1	6	3.3%	29.8%	$12 \min 36 \mathrm{s}$
ResNet50 v1	6	2.0%	25.6%	$25\mathrm{min}17\mathrm{s}$
SqueezeNet v1.1	5	1.3%	28.4%	$6 \min 19 \mathrm{s}$
MobileNet v2	5	8.0%	19.2%	$14\mathrm{min}\;33\mathrm{s}$
			(
		Depthwise C	Convolution	ConvNet7
		need high-precision Ex. Time 🕫		

Beyond Energy-Accuracy Scaling: Brain Teaching

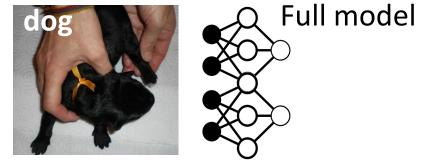


Static vs Dynamic

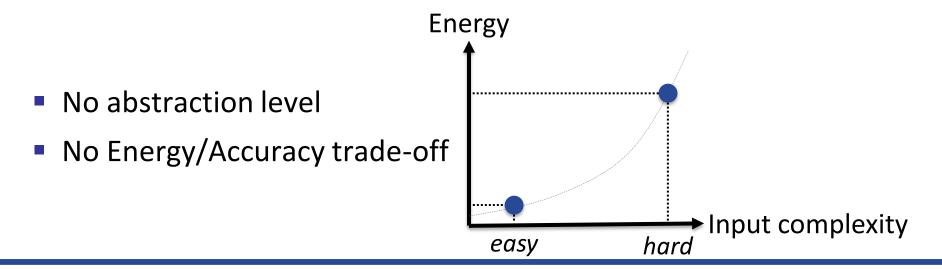
- SoA: Hierarchical ConvNets
 - Tune the computational effort depending on the complexity of the input
 - E.g. drop some filter/layer at run-time



features clearly visible

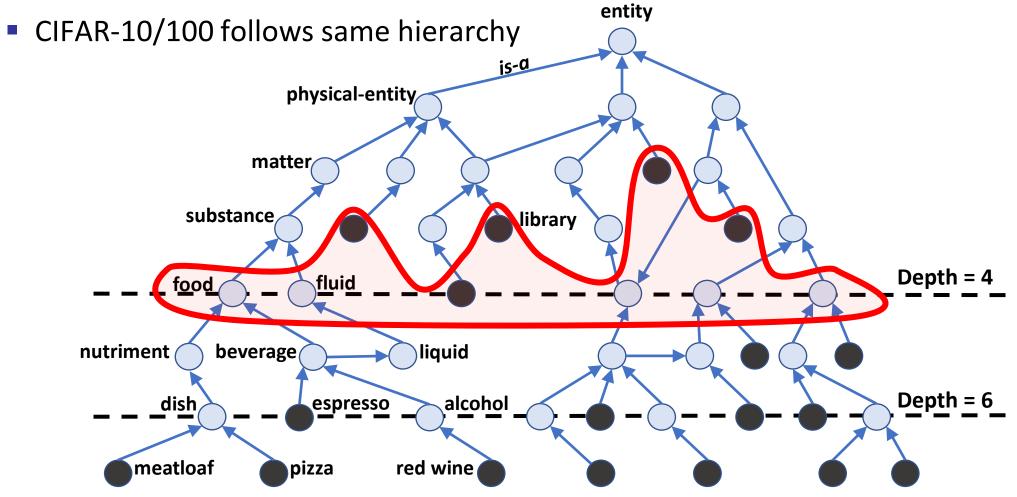


features are "masked"



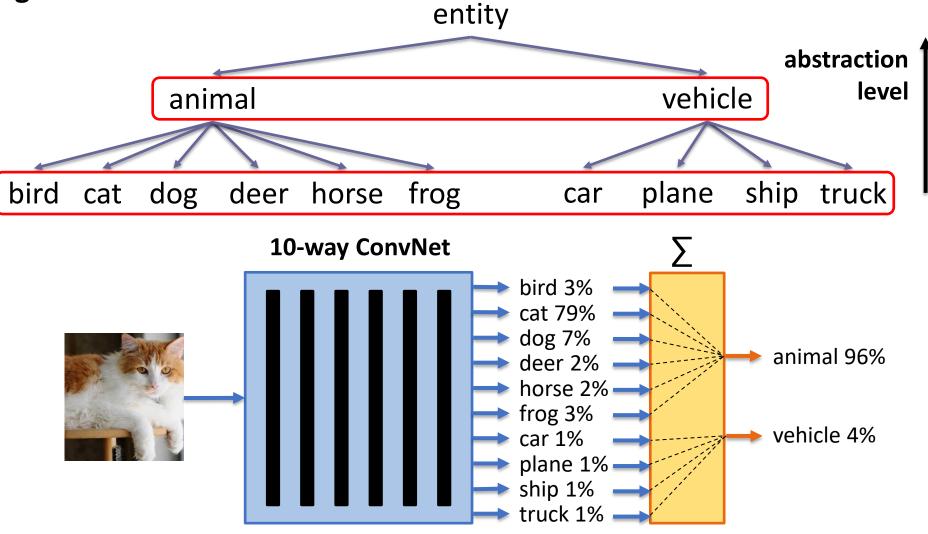
Training Data-Sets are Hierarchical

- Common datasets reflects the semantic abstraction of human reasoning
 - E.g. ImageNet: 1000 classes, 16 levels of abstraction



Multilevel classification with ConvNets

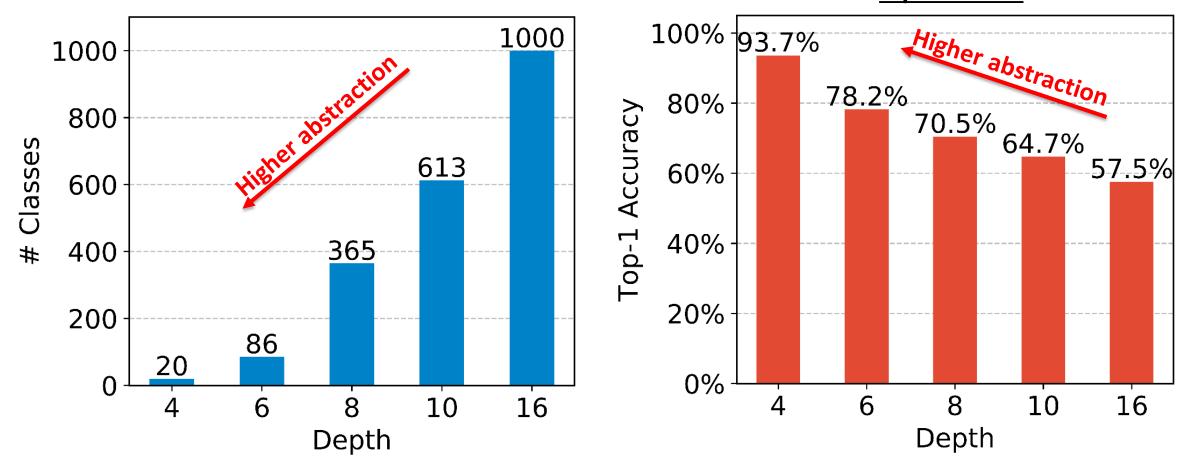
• E.g. Image Classification in CIFAR-10



P(animal) = P(bird) + P(cat) + P(dog) + P(deer) + P(horse) + P(frog)

Scalable Effort ConvNets: Results (1)

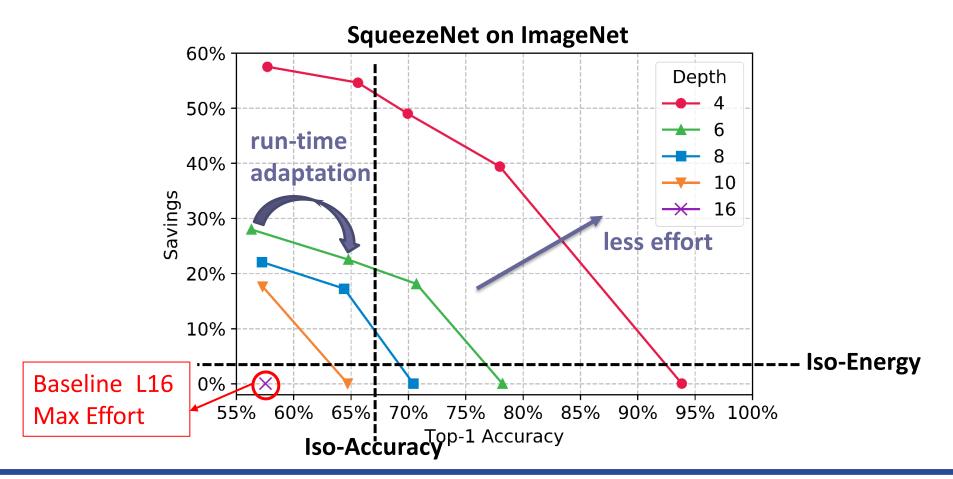
Multi-level Classification on ImageNet



Scalable Effort ConvNets: Results (2)

Adaptive ConvNets

- Multilevel Classification \rightarrow increase accuracy with same effort
- Per-layer Precision Scaling → define multiple points in the energy-accuracy space



3. POWER OPTIMIZATION

Motivations

1. Temperature

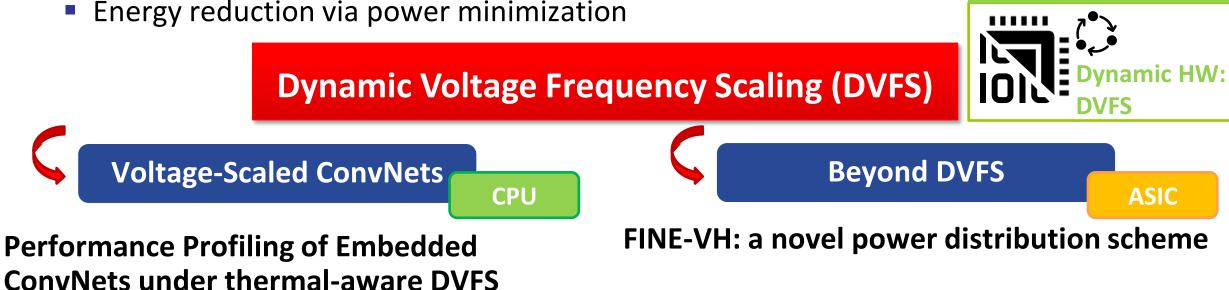
Embedded SoCs have limited TDP

 \rightarrow High temperature when running intensive workloads (e.g. inference)

 \rightarrow Peak-performance for short run-time windows.

2. Energy

Energy reduction via power minimization



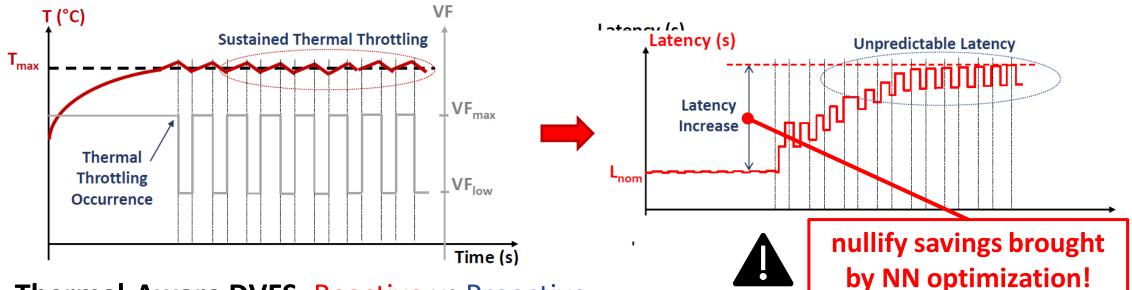
Neglected by

SoA NN optimization

Goal:

Thermal-Aware DVFS

- **Problem:** Data Analytics on a stream-of-data \rightarrow Continuous Inference
- Challenge: Mobile SoCs have limited TDP

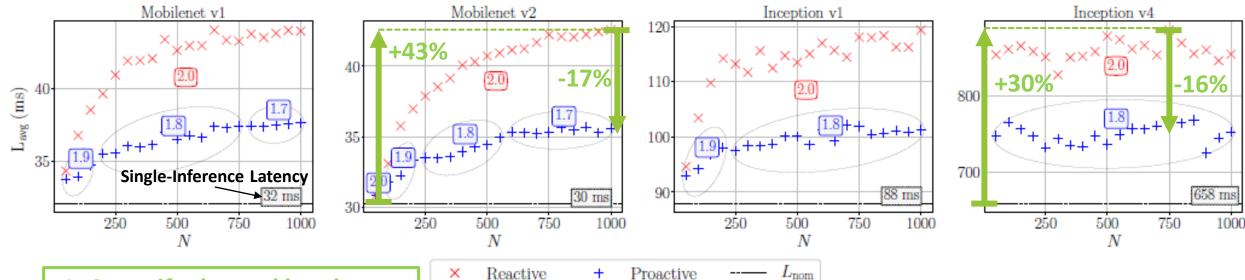


- Thermal-Aware DVFS: Reactive vs Proactive
- **Goal:** Identify the optimal VF operating point

What about ConvNets?

3. POWER

Voltage-Scaled ConvNets on ARM Cortex-A15

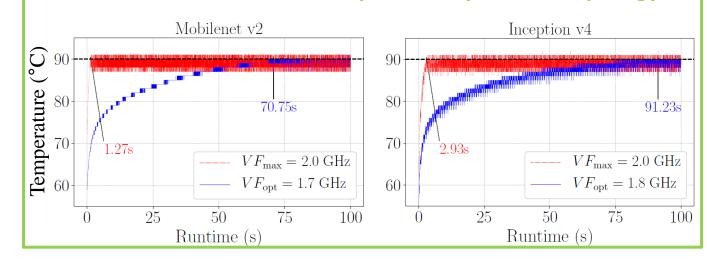


1. Quantify thermal headroom

ConvNet	N_{safe}	t _{safe} (s)		
MobileNet v1	39	1.26		
MobileNet v2	42	1.27		
Inception v1	25	2.21		
Inception v4	4	2.93		
T<90°C				

2. Assess latency under thermal-aware DVFS

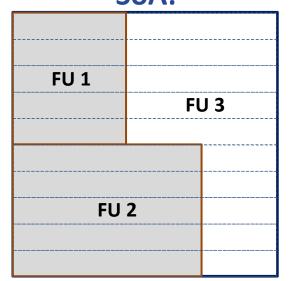
3. Demonstrate thermal profile depend on topology



3. POWER

Beyond DVFS: FINE-VH

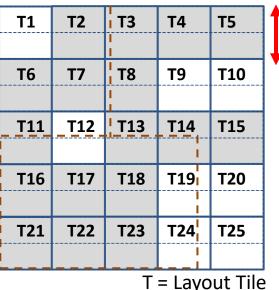




FU = Functional Unit

FINE-VH outperforms DVFS

- Limited area overhead: 6% w.r.t. standard flow
- From 32.0% to 38.2% w.r.t. ideal-DVFS



15-30 rows!

3. POWER

- × Power Distribution
- × Layout Fragmentation
- × No Level-shifters

- <u>How:</u> Fully automated design and simulation flow integrated on a standard EDA tool
- Validated on:
 - RISC Core
 - Deep Learning Accelerator

Wrap-up

1. MEMORY

Prune and Quantize

Memory vs. Accuracy design-space exploration

3\$ HW is enough: 3x compression with <1% loss

Encoding-Aware Sparse Training

Maximize compression of encoding schemes

+8.73% accuracy at 12KB

Contine Precision Scaling

Up to 35.2% savings with <8% loss



3. POWER

Voltage-Scaled ConvNets

Performance profiling under thermal-aware DVFS

Look at Temperature! Safe latency: 1-3s

Scalable-Effort ConvNets

Dynamic Energy-Accuracy-Abstraction Scaling

40% more accurate or 60% more efficient

Novel power distribution scheme to improve DVFS

Up to 38.2% power savings

The Lesson Learnt

The definitive solution does not exist!

Present: Exploratory Data Analysis

- Data Collection/Cleaning
- Data Visualization
- Assess different hypothesis:
 - Hyper-Param. Optimization
 - Learning Strategy
 - Supervised, Self-Supervised, Transfer Learning etc.

Future: Exploratory Optimization Analysis

- Design-Space Exploration
 - Accuracy, Memory, Energy, Power...
- Cost Analysis
 - Which HW?
- Assess different hypothesis:
 - NAS
 - Pruning
 - Quantization
 - Static vs. Dynamic...

Research Activities

Technical Speaker at:

- 2 international conferences (ICCAD18 and SNAMS19)
- 1 national workshop (IWES18)

T

Live Demonstrations at 2 international conferences (DATE19 and ISLPED19)

SENSEI - Sensemaking for Scalable IoT Platforms with In-Situ Data-Analytics: A Software-to-Silicon Solution for Energy-Efficient Machine-Learning on Chip (2 years)

Thank you

Question Time

